
Nature Sustainability

nature sustainability

https://doi.org/10.1038/s41893-025-01754-yResource

Global gridded dataset of heating and 
cooling degree days under climate  
change scenarios
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David C. H. Wallom    1,4, Radhika Khosla    1,2,5 & Malcolm McCulloch1,2,3

Accurate projections of heating and cooling demands are crucial for 

advancing towards the sustainable development goals. Here we present 

a global dataset of heating degree days (HDDs) and cooling degree days 

(CDDs) for three levels of global mean temperature rise above pre-industrial 

conditions—1.0 °C (2006–2016), 1.5 °C and 2.0 °C—regardless of the pathways 

leading to these warming scenarios. The dataset comprises 30 gridded 

maps (0.883° × 0.556° resolution) characterizing climate variability through 

�ve statistical metrics per variable and scenario over a representative 

ten-year period. The dataset reveals a widespread decline in HDDs and a 

pronounced, nonlinear increase in CDDs, with the most signi�cant shifts 

in climate intensity and adaptation needs emerging early in the warming 

trajectory. Furthermore, using the ‘middle-of-the-road’ pathway SSP2–4.5 as 

a reference, the dataset indicates that the population experiencing extreme 

heat conditions (exceeding 3,000 CDDs) is projected to nearly double if the 

2.0 °C threshold is reached, increasing from 23% (1.54 billion people) in 2010 

to 41% (3.79 billion) by 2050, with the largest projected populations a�ected 

in India, Nigeria, Indonesia, Bangladesh, Pakistan and the Philippines. This 

HDD–CDD dataset provides a robust foundation for integrating climate 

information into sustainability planning and development policy.

Decarbonizing heating and cooling energy systems is critical as these 

two end-uses 
.

m
dominate energy demand, are important sources of 

emissions and are key to a range of sustainability goals1,2. Heating 

currently accounts for approximately 45% of building emissions3, 

whereas space cooling is projected to expand more rapidly than any 

other building end-use, expected to be more than triple by 20504. 

To inform sustainability and energy policy decisions, it is crucial to 

understand how climate change may affect building energy use and 

associated greenhouse gas emissions across temporal and spatial 

scales5. Developing more effective and resilient community mitiga-

tion and adaptation strategies for the built environment is imperative 

to achieving the global goal of net-zero carbon emissions by 20506.
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Heating degree days (HDDs) and cooling degree days (CDDs) are 

widely used indicators to estimate heating and cooling demands glob-

ally, serving as key metrics for understanding energy needs across 

diverse climates and socio-economic contexts5,7. They quantify the 

extent to which the daily mean temperatures deviate from a reference 

temperature threshold over a given period8. HDDs are particularly rel-

evant for assessing the implications of cold conditions in high-latitude 

and economically vulnerable regions, where energy poverty poses sig-

nificant challenges.
.

m
 Likewise, CDDs are instrumental in evaluating the 

impacts of extreme heat, especially in low-income areas where cooling 

access is limited and vulnerability to heat stress is pronounced. Emerg-

ing research seeks to enhance these metrics by incorporating additional 
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large ensemble size (more than double those typically available in 

CMIP5 or CMIP6), high spatio-temporal resolution (6-hourly mean 

temperatures rather than daily variables) and the ability to repre-

sent global mean temperature rise levels of 1.5 °C and 2.0 °C above 

pre-industrial conditions independently of the specific timing at 

which these thresholds are reached. By decoupling the analysis from 

specific time horizons and focusing on global mean temperature 

rise thresholds, the dataset offers a unique, policy-relevant perspec-

tive on climate impacts. This approach allows decision makers and 

researchers to assess adaptation needs and infrastructure resilience 

irrespective of when these warming levels are reached, making it 

particularly valuable for long-term planning under uncertainty.

The three global warming levels adhere to the half a degree addi-

tional warming, prognosis and projected impacts (HAPPI) experimental 

design protocol22, with the historical scenario between 2006 and 2016 

representing a global mean temperature rise of 1.0 °C. The general dataset 

builds upon recent contributions4,9,15,16,23, generating here an enhanced, 

comprehensive statistical gridded dataset of 30 maps that capture cli-

mate variability through five statistical descriptors for each variable 

and scenario over a 10-year representative period: mean, median, 10th 

percentile, 90th percentile and standard deviation. The resulting global 

maps of HDDs and CDDs were calculated using the dry-bulb temperature, 

following the standard approach8. The final global gridded maps have a 

spatial resolution of 0.833° × 0.556° (longitude × latitude), covering the 

land surface area. They are available in NetCDF-4 file format (*.nc) at the 

Oxford University Research Archive (ORA) repository24.

These maps serve as a key resource for estimating evolving thermal 

demands under various global warming levels and assessing adapta-

tion priorities, including energy infrastructure and policy needs. The 

dataset also facilitates the evaluation of energy equity, understanding 

of socio-economic impacts and informed guidance on investments in 

renewable energy systems and climate-resilient designs. By integrating 

these data with variables such as population growth, urbanization and 

technological advancements, it supports the development of targeted 

and sustainable solutions for a warming world.

The following sections detail the generated dataset and examine 

its immediate implications. First, the 30 global maps are described, and 

subregional changes in mean HDDs and CDDs are statistically demon-

strated. Second, the countries anticipated to witness the most significant 

variations in HDDs and CDDs are identified. Third, the rate of change in 

CDDs and HDDs across all countries is normalized and compared. Finally, 

the implications of these findings for the population are explored using 

the ‘middle-of-the-road’ projection scenario (SSP2–4.5) as an example.
.

m

Global gridded maps of HDDs and CDDs under 
three global warming levels
Understanding changes in future heating and cooling needs is cru-

cial for forecasting energy demand, optimizing energy systems and 

supporting climate adaptation efforts. Reliable data are essential for 

effective resource allocation and advancing sustainability initiatives.

The complete dataset produced in this study is summarized in 

Extended Data Table 1. It comprises 30 global gridded maps, covering 

two variables—HDD and CDD—across three global mean temperature 

rise scenarios: 1.0 °C (based on 2006–2016 observations), 1.5 °C and 

2.0 °C. For each variable and scenario, five statistical descriptors of 

the model ensemble are provided: mean, median, 10th percentile, 

90th percentile and standard deviation. This dataset represents the 

most comprehensive global mapping to date of heating and cool-

ing needs, capturing the ensemble-based climate variability across 

global warming levels. All maps are provided at a spatial resolution of 

0.833° × 0.556° (longitude × latitude) over the land surface, approxi-

mately 60 km at mid-latitudes.

Figure 1 illustrates and statistically analyses the spatial distribution 

of mean HDD. Left panels in Fig. 1 show global maps of mean HDDs for 

each climate scenario, calculated as the annual mean per grid cell using 
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variables such as humidity, adaptive comfort thresholds and behavioural 

factors to improve local relevance4. Despite these advancements, HDDs 

and CDDs remain indispensable, consistent and scalable indicators for 

evaluating heating and cooling demands. Moreover, they enable com-

parability across existing studies, enhancing the usefulness of data for 

adaptation planning by providing more relevant and actionable insights.

Previous research on HDDs and CDDs has predominantly focused 

on global mapping using historical data9,10, with some employing 

model-based climate projections to assess the climate change impacts 

in specific regions11–14 or globally under specific time frames and emis-

sions pathways15,16. The most recent global mapping of HDDs and CDDs 

under different climate change scenarios was produced by Spinoni 

et al.16. They generated global maps at a 0.44° × 0.44° resolution using 

outputs from 34 Coordinated Regional Climate Downscaling Experi-

ment simulations based on regional climate models driven by 20 global 

climate models from the Coupled Model Intercomparison Project 

Phase 5 (CMIP5). However, this dataset was not bias corrected, lacked 

a historical baseline scenario (covering only 1.5 °C, 2 °C, 3 °C and 4 °C 

above pre-industrial levels) and reported only ensemble medians and 

spreads—without capturing climate variability (for example, P10, P90 

or standard deviation). Moreover, the remaining previous studies have 

been mainly constrained to specific temporal contexts and emissions 

pathways, making it challenging to compare datasets and scenarios 

due to the diverse range of methodologies and assumptions. This 

variability has created a substantial gap in forecasting and comparing 

current and future heating and cooling demands across global warm-

ing levels—from 1 °C (2006–2016) to 1.5 °C and 2.0 °C—independently 

of the timing of these changes. Key questions remain for adaptation 

planning, such as whether trends in HDDs and CDDs progress linearly 

or nonlinearly and whether these trends follow consistent patterns 

across countries or exhibit significant regional variations.

This study generates a global dataset of HDDs and CDDs for 

three global warming levels above pre-industrial conditions—1.0 °C 

(based on 2006–2016 observations), 1.5 °C and 2.0 °C—regardless of 

when these occur, to evaluate the climate change implications for 

the heating and cooling sector globally. The temperature ensemble 

used to generate this dataset is characterized by (1) a high tem-

poral resolution (6-hourly mean temperatures simulated with the 

HadAM4 climate model17,18), (2) a large ensemble size (70 members 

over ten years), (3) bias-corrected outputs, (4) multiple statistical 

descriptors per grid cell to illustrate climate variability with 30 grid-

ded maps and (5) the representation of global mean temperature 

rise levels of 1.5 °C and 2.0 °C independently of the specific time at 

which these thresholds are reached. The HadAM4 climate model19 

is particularly well suited to the goals of this study, offering specific 

advantages over CMIP5 or CMIP6 models. Whereas HadAM4 lacks 

interactive coupling to ocean and aerosol components, it is suffi-

ciently memory efficient to run on personal computers of volunteers 

using the climateprediction.net distributed computing platform20. 

This computational efficiency enables the generation of very large, 

high-resolution ensembles using prescribed sea surface tempera-

tures and greenhouse gas concentrations, an approach that would 

be prohibitively expensive to run on a standard supercomputer with 

most fully coupled Earth system models21. Its configuration is com-

parable to that of many CMIP6 and CMIP5 models, and its warming 

patterns are similar to the CMIP6 multi-model mean as reported by 

Lizana et al.17, ensuring a credible representation of climate dynam-

ics. The HadAM4 configuration was selected for its efficiency in simu-

lating stable global mean temperature states17 or its demonstrated 

ability to represent extreme-season variability21. Moreover, the bias 

correction is also necessary because, unlike other studies such as 

Spinoni et al.16, it ensures that the results are not systematically 

skewed by model-specific errors, thereby improving the reliability 

and comparability of the findings. As a result, the bias-corrected 

HadAM4-based temperature ensemble used in this study features a 

http://www.nature.com/natsustain
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a 70-member ensemble over a 10-year period (700 annual simulations 

per scenario). Right panels in Fig. 1 display boxplots of HDD distribu-

tions across world regions, enabling a comparative assessment of 

regional heating demand under progressive global warming.
.

m

While the spatial maps provide a global overview of HDD pat-

terns, differences between scenarios may appear subtle given the 

scale of global change. However, the boxplots clearly demonstrate a 

consistent decline in HDDs across all regions as global mean tempera-

ture rises. This downward trend indicates a widespread reduction in 

heating demand, with the most pronounced decreases occurring in 

higher-latitude regions that have historically exhibited the highest 

Q10

HDD values. The ensemble-based approach enhances the robustness 

of these findings, underscoring the significant impact that even mod-

est global warming can have on regional energy impact for heating.

In a similar approach, Fig. 2 shows and statistically analyses the spatial 

distribution of mean CDD, with left maps showing global mean CDD maps 

while right plots present regional boxplots for each warming scenario.
.

m

Again, while the spatial maps provide a broad overview of CDD 

patterns, the boxplots clearly reveal a consistent rise in CDD values 

across all regions as global temperatures increase. This upward trend 

signals a growing demand for cooling, particularly in lower-latitude 

regions already subject to high ambient temperatures. The results also 
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Fig. 1 | Global mean HDDs for three global warming scenarios. a, 
.

m
Global mean 

HDDs for 1.0 °C (historical scenario) (i). b, Global mean HDDs for 1.5 °C (i). 

 c, Global mean HDDs for 2.0 °C (i). Values are calculated as the annual mean HDDs 

per grid across the ensemble of 70 members for 10 years per scenario, resulting in 

a total of 700 annual runs. Spatial resolution: 0.833 longitude and 0.556 latitude. 

The boxplot shows the distribution of data by region, indicating the median 

(centre line), the interquartile range (IQR) (box, 25th–75th percentiles), whiskers 

extending to 1.5 × IQR, and points beyond are plotted as outliers: boxplot of 

HDD distribution under the 1.0 °C scenario (2006–2016) (a(ii)); boxplot of HDD 

distribution under the 1.5 °C scenario (b(ii)); boxplot of HDD distribution under 

the 2.0 °C scenario (c(ii)). Basemaps in a(i), b(i) and c(i) from Natural Earth.
.
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indicate increasing disparities in cooling needs between regions. As 

with HDD, the ensemble-based methodology enhances the robustness 

of these findings, demonstrating that even modest warming can lead 

to significant changes in regional cooling requirements.

Additional descriptive statistics for the complete dataset are 

provided in Extended Data Table 1.

Global changes in HDDs
To gain an initial understanding of the dataset’s implications, it is essen-

tial to identify the countries most likely to experience the most signifi-

cant shifts in heating and cooling requirements. Table 1 lists the top 20 

countries with populations exceeding 2 million that are projected to 

experience the most substantial changes in HDDs from 1.0 to 2.0 °C. 
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Scenario 1.5 °C—subregion distribution
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Fig. 2 | Global mean CDDs for three global warming scenarios. a, Global  

mean CDDs for 1.0 °C (historical scenario). (i) b, Global mean CDDs for 1.5 °C (i). 

c, Global mean CDDs for 2.0 °C (i). Values are calculated as the annual mean CDDs 

per grid across the ensemble of 70 members for 10 years per scenario, resulting 

in a total of 700 annual runs. Spatial resolution: 0.833 longitude and 0.556 

latitude. The boxplot shows the distribution of data by region, indicating the 

median (centre line), the IQR (box, 25th–75th percentiles), whiskers extending to 

1.5 × IQR, and points beyond are plotted as outliers: boxplot of CDD distribution 

under the 1.0 °C scenario (2006–2016) (a(ii)); boxplot of CDD distribution under 

the 1.5 °C scenario (b(ii)); boxplot of CDD distribution under the 2.0 °C scenario 

(c(ii)). Basemaps in a(i), b(i) and c(i) from Natural Earth.
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Extended Data Fig. 1 illustrates the difference between historical mean 

HDDs at 1.0 °C and 1.5 °C (Extended Data Fig. 1a), between 1.5 °C and 

2.0 °C (Extended Data Fig. 1b) and between 1.0 °C and 2.0 °C (Extended 

Data Fig. 1c) global warming levels.

When analysing the top-20 countries with the largest change in 

heating needs as the world warms to 2.0 °C, several key points are worth 

noting. Most of these 20 countries (18 out of 20) are among the coolest 

regions in the world, as listed in Supplementary Note 3.
.

m
 In this context, 

Slovakia and Czechia take the place of Chile and Ukraine.

They are all regions from three main continents: North America, 

Europe and Asia. The most considerable changes in area-weighted 

mean HDDs are found in Canada, the Russian Federation, Finland, 

Sweden and Norway, with reductions ranging from 554 to 850 HDDs.

The decrease in heating needs is not linear in these regions. 

Most of the decrease in heating demand occurs before reaching the 

1.5 °C threshold, indicating that the most significant shifts in energy 

requirements happen in the early stages of warming rather than in 

a steady progression. This is evident in the comparison of Extended 

Data Figs. 1a,b, where the yellow areas are more widespread at the first 

warming threshold.
.

m

Changes in CDDs
Table 2 ranks the top 20 countries with more than 2 million inhabit-

ants that will experience the most significant absolute increase in 

area-weighted mean CDDs from 1.0 to 2.0 °C. Extended Data Fig. 2 

illustrates the differences between historical mean CDD at 1.0 °C and 

1.5 °C (Extended Data Fig. 2a), between 1.5 °C and 2.0 °C (Extended 

Data Fig. 2b) and between 1.0 °C and 2.0 °C (Extended Data Fig. 2c).

When analysing the top-20 countries with the largest increase in 

cooling needs under a 2.0 °C rise in global mean temperature, several 

key points should be noted. In contrast to the changes in HDDs, here 

Q15
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only 7 out of 20 countries are located in some of the hottest regions in 

the world (all countries in Supplementary Note 4). These regions are 

in Africa (Mali, Burkina Faso, Chad, South Sudan, Benin, Nigeria) and 

Asia (Cambodia).

The 20 countries with the most significant changes in CDDs are 

also developing nations. They are all located near the equator or within 

tropical and subtropical latitudes, resulting in warm climates with high 

temperatures throughout the year. These shifts are expected to further 

strain the socio-economic development of these regions. Most of these 

countries are in Africa (Central African Republic, Nigeria, South Sudan, 

Burkina Faso, Mali, Chad, the Democratic Republic of the Congo, Cam-

eroon, Uganda, Benin, Congo), whereas others are in South America 

(Brazil, Venezuela, Paraguay), Central America (Honduras, Guatemala, 

Nicaragua) and Southeast Asia (Laos, Thailand, Cambodia).

The largest increases in area-weighted mean CDDs are observed 

in the Central African Republic, Nigeria, South Sudan, Laos and Bra-

zil, with increases of 524–560 CDDs. These regions are projected to 

experience the most dramatic increase in cooling needs from 1.0 °C 

to 2.0 °C, as shown in Extended Data Fig. 2, necessitating substantial 

adaptation efforts.

Like HDDs, most CDD changes occur before reaching the 1.5 °C 

threshold across the top 20 countries, indicating that the most signifi-

cant shifts in adaptation requirements to higher temperatures occur 

in the early stages of warming rather than in a steady progression. This 

is evident in the comparison of Extended Data Fig. 2a,b, where the red 

areas are more widespread at the first warming threshold.
.

m

The rate of change in heating and cooling needs
This section examines the linear or nonlinear nature of changes in 

CDDs and HDDs across global warming levels for all countries. The 

earlier analysis indicates that among the 20 countries most impacted by 

Q17

Table 1 | Countries with the highest absolute change in area-weighted mean HDDs from 1.0 °C to 2.0 °C scenario
.

m

Top countries by ΔHDD18 ΔHDD18 from 1.0 

to 1.5 °C

ΔHDD18 from 1.5 

to 2.0 °C

ΔHDD18 from 1.0 

to 2.0 °C

Relative Change (%) 

from 1.0 to 1.5 °C

Relative Change (%) 

from 1.5 to 2.0 °C

Relative Change (%) 

from 1.0 to 2.0 °C

1 Canada −594 −256 −850 −7.0% −3.3% −10.0%

2 Russian Federation −456 −296 −752 −5.6% −3.9% −9.3%

3 Finland −337 −278 −614 −6.2% −5.5% −11.3%

4 Sweden −312 −254 −566 −5.9% −5.1% −10.7%

5 Norway −311 −242 −554 −5.5% −4.6% −9.9%

6 Mongolia −263 −223 −486 −4.2% −3.7% −7.8%

7 USA −278 −206 −484 −6.6% −5.2% −11.4%

8 Kyrgyzstan −258 −195 −453 −4.2% −3.3% −7.4%

9 Austria −249 −202 −451 −6.3% −5.4% −11.3%

10 Belarus −242 −207 −449 −6.1% −5.5% −11.3%

11 Switzerland −247 −201 −448 −5.7% −4.9% −10.3%

12 Armenia −252 −184 −436 −6.3% −4.9% −10.9%

13 Lithuania −231 −204 −436 −5.9% −5.5% −11.0%

14 North Korea −246 −177 −423 −5.8% −4.4% −9.9%

15 China −241 −181 −422 −5.3% −4.2% −9.3%

16 Kazakhstan −250 −172 −421 −5.5% −4.0% −9.2%

17 Georgia −244 −171 −415 −6.6% −4.9% −11.2%

18 Slovakia −226 −183 −409 −6.7% −5.9% −12.2%

19 Czechia −219 −187 −406 −6.4% −5.8% −11.8%

20 Tajikistan −226 −179 −405 −3.5% −2.9% −6.3%

Countries with more than 2 million inhabitants in 2020 are listed. Annual HDDs were calculated using a temperature baseline of 18 °C. Delta (∆) refers to the incremental (+) or decremental 

(−) change in the variable. The relative change (%) per country was calculated using area-weighted mean values rather than grid-based values. The bold column denotes the metric used for 

country ranking. The countries are ranked by the absolute change in their heating needs between the 1.0 °C and 2.0 °C scenarios. Delta HDD (∆HDD) refers to the incremental/decremental 

change in area-weighted mean HDDs per country.
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changes in HDDs and CDDs, the transition from the 1.0 °C (2006–2016) 

to the 1.5 °C warming scenario represents the most significant shift. 

However, a key question remains: will this short-term acceleration in 

HDD and CDD trends follow a similar pattern across all countries or 

will regional variations emerge?

Figure 3 answers the question, illustrating all countries’ normal-

ized changes in CDDs (Fig. 3a) and HDDs (Fig. 53b). It compares the 

CDD–HDD observations from 2006–2016, a period with a global mean 

temperature rise of 1.0 °C, to the projected CDD–HDD scenarios, with 

a global mean temperature rise of 1.5 °C and 2.0 °C.

The results clearly demonstrate how the warming rate is accelerat-

ing the increase in CDDs during the current decade for all countries, 

as the world approaches a global mean temperature rise of 1.5 °C. This 

trend shows that even regions with historically moderate cooling 

demands (low CDD values) are experiencing sharper increases in CDDs 

as temperatures rise. Consequently, this leads to a significant increase 

in energy demand for cooling systems, posing challenges for energy 

infrastructure and sustainable development. Additionally, this rapid 

shift underscores the need for more resilient, energy efficient building 

designs and cooling technologies to mitigate the growing reliance on 

air conditioning systems.

In the case of HDDs, results reveal a more complex and varied 

pattern across countries. Some countries, particularly those in colder 

regions, experience a notably higher decrease in HDDs as temperatures 

warm during the current decade before the global mean temperature 

reaches 1.5 °C, as discussed in the previous section. In contrast, other 

countries show the opposite trend, with less significant or delayed 

changes in HDDs. This divergence underscores regional differences 

in climate sensitivity and the interplay of local geography, seasonal 

patterns and baseline temperatures. Regions experiencing significant 

changes earlier will need to adapt their heating strategies, which may 

operate at partial load more frequently and for more extended periods, 

whereas those with delayed changes may have more time to adjust. 

These findings emphasize the importance of region-specific policies 

to address heating demands, improve energy efficiency, and optimize 

building services in response to climate change.

Implications under the SSP2–4.5 pathway
The dataset’s independence from specific emissions or socio-economic 

pathways enables its application in various policy and planning 

contexts. In this section, we explore the implications of our dataset 

using a specific Shared Socioeconomic Pathway (SSP) scenario as an 

illustrative example.

We employ SSP2–4.5, which represents a ‘middle-of-the-road’ 

socio-economic context, to illustrate how our dataset can be incor-

porated into a particular pathway in which global development trends 

follow historical trajectories (refer to Fig. 4a, orange line)25. Under this 

scenario, the global population is projected to increase from approxi-

mately 6.81 billion in 2010 to 8.32 billion by 2030 and 9.24 billion by 

2050 (Fig. 4b, orange line)25,26. This example provides a concrete case 

for interpreting the impact of projected changes in heating and cooling 

demand, illustrating the relevance of our dataset for informing sectoral 

adaptation strategies under plausible future conditions.

For this ‘middle-of-the-road’ socio-economic pathway (or inter-

mediate pathway, SSP2–4.5), Fig. 4c analyses the global population’s 

exposure to HDDs and CDDs under the SSP2 pathway for 1 °C (historical, 

2006–2016), 1.5 °C and 2.0 °C scenarios.
.

m
 Global population data are 

grouped in increments of 100 CDDs and HDDs.

Figure 4c shows the total distribution of the population under 

different heat exposures, aggregated in 100 CDD intervals. The figure 
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Table 2 | Countries with the highest absolute change in area-weighted mean CDDs from 1.0 °C to 2.0 °C scenario

Top countries by 

ΔCDD18

ΔCDD18 from 1.0 

to 1.5 °C

ΔCDD18 from 1.5 

to 2.0 °C

ΔCDD18 from 1.0 

to 2.0 °C

Relative Change (%) 

from 1.0 to 1.5 °C

Relative Change (%) 

from 1.5 to 2.0 °C

Relative Change (%) 

from 1.0 to 2.0 °C

1 Central African 

Republic

293 266 560 +10.3% 8.5% +19.6%

2 Nigeria 295 245 540 +8.9% 6.8% +16.3%

3 South Sudan 285 251 536 +8.2% 6.7% +15.4%

4 Laos 334 196 530 +15.6% 7.9% +24.7%

5 Brazil 297 227 524 +11.4% 7.8% +20.0%

6 Honduras 303 216 519 +14.4% 9.0% +24.6%

7 Guatemala 292 225 516 +13.0% 8.9% +23.0%

8 Burkina Faso 262 254 516 +6.8% 6.2% +13.5%

9 Venezuela 294 214 508 +10.6% 6.9% +18.3%

10 Paraguay 294 210 503 +11.9% 7.6% +20.3%

11 Mali 250 253 503 +6.4% 6.0% +12.8%

12 Thailand 303 197 499 +9.5% 5.6% +15.7%

13 Chad 263 236 498 +7.3% 6.1% +13.8%

14 Democratic Republic of 

The Congo

253 240 493 +11.1% 9.5% +21.7%

15 Cameroon 264 228 491 +10.8% 8.4% +20.0%

16 Benin 266 220 486 +7.8% 6.0% +14.2%

17 Nicaragua 284 200 484 +10.5% 6.7% +17.9%

18 Cambodia 294 189 482 +8.4% 5.0% +13.8%

19 Congo 240 241 481 +9.5% 8.7% +19.1%

20 Uganda 249 232 480 +12.8% 10.6% +24.7%

Countries with more than 2 million inhabitants in 2020 are listed. Annual CDDs were calculated using a temperature baseline of 18 °C. Delta (∆) refers to the incremental (+) or decremental (−) 

change in the variable. The relative value per country was calculated using area-weighted mean values rather than grid-based values. The bold column denotes the metric used for country 

ranking. The countries are ranked by the absolute change in their cooling needs between the 1.0 °C and 2.0 °C scenarios. Delta CDD (∆CDD) refers to the incremental/decremental change in 

area-weighted mean CDD per country.
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highlights how people living in extreme heat regions ( > 3,000 CDD) 

are projected to increase from 23% (1.54 billion, blue line) in 2010 to 

34% (2.80 billion, orange line) by 2030 and to 41% (3.79 billion, red 

line) by 2050. The countries with the largest populations affected by 

these extremes are, and will continue to be, India, Nigeria, Indonesia, 

Bangladesh, Pakistan and the Philippines. Also, global people × CDD 

(people-CDD) is expected to increase by 42% if the global warming 

level reaches 1.5 °C. This figure will extend to 74% if we reach 2.0 °C.

From a different perspective, in SSP2–4.5, the total distribution 

of the population by heating need is illustrated in Fig. 4d, aggregated 

into 100 HDD intervals. Here people living in extremely cool regions 

( > 3,000 HDDs) are projected to decrease from 14% (0.93 billion, blue 

line) to 10% (0.80 billion, orange line) by 2030 and to 7% (0.68 billion, 

red line) by 2050. Globally, global people × HDD (people-HDD) will 

increase by 1% if the global warming level reaches 1.5 °C, mainly due to 

population growth, but decrease by 4% if it reaches 2.0 °C.

Discussion
The global gridded dataset of HDDs and CDDs developed in this 

study captures how global warming levels of 1.5 °C and 2.0 °C above 

pre-industrial levels influence thermal energy demand worldwide. 

Beyond quantifying spatial variations in heating and cooling needs, 

the dataset provides a foundation for assessing regional disparities in 

climate hazards, vulnerability and coping capacity, offering valuable 

insights for adaptation planning and risk management.

The statistical analysis of the dataset also highlights several key 

insights of broader relevance that should be carefully considered, 

including the nonlinear rate of increase in climate intensity, the coun-

tries most affected and the projected increase in the number of people 

living under extreme heat conditions, as discussed below.

The warming rate is not linear between 1.0 °C (2006–2016), 1.5 °C 

and 2.0 °C. Cooling needs are changing faster in the current decade 

as the world approaches a 1.5 °C global temperature rise, with CDD 

increases from 1.0 °C to 1.5 °C surpassing those expected between 

1.5 °C and 2.0 °C. This has important implications for adaptation to 

warming temperatures, including the need for rigorous, immediate, 

sustainable solutions. In terms of heating needs, these rapid changes 

are particularly evident in the coolest regions.

Countries with significant implications for a global mean tempera-

ture rise of 2.0 °C are also identified. Canada, the Russian Federation, 

Finland, Sweden and Norway will experience a significant decrease in 

area-weighted mean HDDs, ranging from 554 to 850 HDDs, drastically 

reducing future heating needs per capita. Analogously, the Central 

African Republic, Nigeria, South Sudan, Laos and Brazil will experience 

a significant rise in area-weighted mean CDDs per country, increasing 

by 524–560 CDDs, drastically increasing cooling needs per capita. 

The countries experiencing the most significant changes in CDD are 

predominantly developing nations in tropical and subtropical regions. 

These regions, characterized by warm year-round climates and high 

temperatures, are primarily found in Africa, with additional representa-

tion from South America, Central America and Southeast Asia. As these 

shifts in CDDs continue, they are expected to place additional pressure 

on the socio-economic development of these countries, exacerbating 

existing challenges and hindering their growth and resilience.

It should also be noted that the impact of temperature-related 

climate change on people, energy, infrastructure, the economy and 

the environment is determined not only by absolute values but also by 

the relative changes compared to historical conditions. This principle 

is particularly important for future CDDs or cooling needs, especially 

in countries lacking the infrastructure to manage cooling demand. 

Given that these countries’ built environment and infrastructure are 

predominantly prepared for cold seasons (for example, homes that 

maximize solar gains and minimize ventilation, public transport with-

out air conditioning systems and so on), the anticipated temperature 

increase, though moderate, will probably have a severe impact com-

pared to regions with the resources, capacity and embodied capital 

to manage heat23.

These findings also reveal how, under a ‘middle-of-the-road’ 

shared socio-economic pathway scenario (SSP2–4.5), the population 

living in extreme heat regions (>3,000 CDDs) is projected to increase 

from 23% (1.54 billion) in 2010 to 34% (2.80 billion) by 2030 and to 

41% (3.79 billion) by 2050. The results underscore the rapidly grow-

ing vulnerability of populations to extreme heat and emphasize the 

need for targeted adaptation and mitigation strategies to address the 

impacts of rising temperatures. Additionally, they highlight that global 

population × CDD (people-CDD) is expected to increase by 74% if the 

global mean temperature increases to 2.0 °C, while global population 

× HDD (people-HDD) is expected to decrease by 4% if we reach 2.0 °C.

This open-source dataset offers valuable insights for anticipating 

future energy demand, optimizing energy systems and advancing 

climate adaptation and sustainable development goals. To ensure the 

practical relevance of these findings, it is essential to demonstrate how 

they can support decision-making across key sectors. The projections 

of heating and cooling degree days (HDDs and CDDs) can be directly 

applied to inform early-stage building design, regional energy system 

planning and public health preparedness.

For instance, in the building sector, the gridded HDD and CDD 

data can guide climate-responsive planning by identifying regions 

where cooling demand is projected to increase most significantly in 

the coming decades27. In areas shifting from heating-dominated to 

mixed or cooling-dominated climates, architects and engineers can 

prioritize adaptation strategies for sustainable cooling28—such as 

shading, ventilation or thermal mass—and revise building standards 

to align with emerging needs.

a Normalized change in mean CDDs per country b Normalized change in mean HDDs per country 
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Fig. 3 | Normalized changes in area-weighted mean CDDs and HDDs for all countries. a, CDDs. b, HDDs. 
.

m
The comparison is drawn between the historical scenario—

based on observations from 2006 to 2016, with a global mean temperature rise of 1.0 °C following the HAPPI protocol22—and the projected scenarios for a global mean 

temperature rise of 1.5 °C and 2.0 °C.
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In energy system planning, spatially resolved HDD and CDD trends 

offer critical inputs for forecasting future energy loads, enabling plan-

ners and utilities to anticipate changes in peak demand and to consider 

centralized and/or decentralized energy solutions, such as demand 

flexibility29,30 or district heating and cooling networks31. These data 

are beneficial for scenario analysis and long-term planning at both the 

regional and national levels.

From a public health perspective, rising CDD values highlight 

regions at growing risk of extreme heat exposure, especially in areas 

with historically low cooling demand. These insights can support the 

design of heat-health early warning systems, the strategic placement 

of cooling shelters and the development of heatwave response plans—

particularly in regions with vulnerable populations32.

By applying these metrics across disciplines, stakeholders can 

better prepare for climate-induced changes in temperature patterns, 

supporting more resilient and adaptive systems.

Methods
In this section, we describe the data and methods used to generate the 

global gridded maps of CDDs and HDDs and perform the geospatial 

statistical analysis.

Climate data and selection criteria
The global gridded CDD and HDD maps were generated using a large 

bias-corrected HadAM4-based temperature ensemble for three global 

warming levels (1 °C, 1.5 °C and 2.0 °C) generated by Lizana et al.17 and 

available at the CEDA repository18.
.

m
 This climate dataset was produced 

using the HadAM4 Atmosphere-only General Circulation Model33,34 

from the UK Met Office Hadley Centre. The simulations were con-

ducted within the climateprediction.net (CPDN) climate modelling 

environment20, which employs the Berkeley Open Infrastructure for 

Network Computing framework to distribute numerous computational 

tasks across a global network of volunteer computers

This temperature ensemble was chosen for four reasons: (1) its 

large ensemble size of 70 members over ten years per scenario, (2) its 

high spatio-temporal resolution with 6-hourly mean temperatures at 

0.883° × 0.556°, (3) its bias-corrected simulations and (4) its capabil-

ity to represent global mean temperature rise scenarios by 1.5 °C and 

2.0 °C independently of when these thresholds are achieved.
.

m
 This 

ensemble size is significantly larger than those typically available in 

other model intercomparison projects (for example, CMIP6), where 

most models provide only 10–30 ensemble members per scenario. The 

use of the HadAM4 model within the CPDN framework also allows for 

output at a 6-hourly temporal resolution, significantly finer than the 

daily output commonly available from recent climate model ensem-

bles. Also, the model focuses on global mean temperature rise levels 

of 1.5 °C and 2.0 °C, independent of when or under which pathway 

these temperature thresholds are reached. This framing enables a 

policy-relevant, scenario-agnostic assessment of climate impacts 

that aligns directly with the temperature goals of the Paris Agree-

ment. The climate modelling aligns with the HAPPI protocol, which 

prescribes constant forcing levels consistent with 1.5 °C and 2.0 °C of 
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Fig. 4 | Implications of CDDs and HDDs for the Intergovernmental Panel 

on Climate Change scenario SSP2–4.5. a, Climate change projections across 

Intergovernmental Panel on Climate Change (IPCC) scenarios, with identification 

of the generated CDD and HDD datasets used for SSP2–4.5 (dashed lines). 

Colour shading shows the uncertainty ranges for the low- and high-emissions 

scenarios (SSP1–2.6 and SSP3–7.0). b, Population projections for different SSPs. 

c, Population distribution over CDDs in SSP2–4.5, with the total number of 

population in 2010 aggregated in 100 CDD intervals. d, Population distribution 

per HDD in SSP2–4.5, with the total population in 2010 aggregated in 100  

HDD intervals.
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global warming above pre-industrial levels. All ensemble members 

were run with these fixed forcings over a 10-year period to sample the 

climate system’s internal variability. Consequently, the simulations 

are not designed to reach 1.5 °C or 2.0 °C at a specific point in time; 

rather, they represent stabilized climate states corresponding to these 

warming levels. Any temporal differences observed across ensemble 

members reflect internal model variability, not differences in when the 

warming thresholds were reached.

Bias correction
The temperature ensembles generated by Lizana et al.17 were cor-

rected for bias using a quantile-mapping method, which adjusts the 

full distribution of modelled temperatures to match observed data. 

This method corrects systematic biases at each percentile, ensuring 

a representation of both average conditions and extremes while pre-

serving the ensemble’s internal variability. For this process, the ERA5 

reanalysis dataset35,36 with a spatial resolution of 0.25° was re-gridded 

to a 0.833° × 0.556° grid to match the model resolution. Biases were 

calculated at each percentile by comparing the cumulative distribution 

functions of the historical model output and ERA5 observations. The 

calculated biases were added to the 1 °C (2006–2016), 1.5 °C and 2.0 °C 

temperature scenarios at their corresponding percentiles, assuming 

that the bias remains constant across scenarios. The bias correction was 

applied to the combined ensemble, comprising 70 individual members 

over a 10-year period, thereby preserving the internal variability of the 

multi-member ensemble after correction. More details can be found 

in Lizana et al.17.

Validation and uncertainty
The validation and reliability of the bias-corrected HadAM4-based 

temperature ensemble used in this study were assessed by compar-

ing the bias-corrected HadAM4-based temperature ensemble with 

ERA5 (for the historical period between 2006 and 2016) and with the 

CMIP6 multi-model mean for future projections17. Details from this 

analysis are provided in Supplementary Note 6. The analysis shows 

that the ensemble used to generate the historical maps aligns per-

fectly with ERA5 observations, indicating the good performance of 

the bias-corrected historical model output. Comparing future projec-

tions for 1.5 °C and 2.0 °C scenarios with the CMIP6 model mean shows 

similar overall warming, with most temperature differences within 

± 0.5 °C and slightly higher warming (0.5–1 °C) in some high northern 

latitudes. These differences are within the range of differences seen 

between other models and lie within the range of credible projections 

produced by contemporary climate models37.

Other datasets used
Other datasets were used to provide an example on how to use this 

dataset under a specific Shared Socioeconomic Pathway (SSP) scenario: 

the SSP2–4.5 pathway defined by IPCC25. The global gridded population 

datasets for this SSP2–4.5 scenario across different temporal periods 

were obtained from Wang et al.38 and are available in the Figshare 

repository39. These datasets were used to quantify the implications of 

CDDs and HDDs in the population, illustrated in Fig. 4.

Calculation of HDDs and CDDs
HDD and CDD measure how much the dry-bulb temperature exceeds 

(above or below) a reference temperature threshold (TThreshold) each 

day over a given period.

The calculation of HDD and CDD can follow different meth-

odologies depending on the available data, context and intended 

application8. Commonly used reference temperature thresholds 

for calculating HDD and CDD are 65 °F (18.0 °C) (refs. 4,40–43). 

Some studies adopt 18.3 °C as a direct conversion from 65 °F (refs. 

9,15), whereas others apply even higher thresholds9,42. Temperature 

data used in these calculations may vary in temporal resolution, 

from daily to sub-daily records. Although finer resolutions tend to 

improve accuracy, the difference between daily and hourly estimates 

is usually minor8.

In this study, HDD and CDD are calculated using 6-hourly tempera-

ture data following the approach previously used in Nicole et al.23 and 

described in equations (1) and (2). This sub-daily resolution captures 

part of the diurnal temperature variability, which is particularly impor-

tant in regions with large day–night temperature ranges. Both T
threshold

 

and T
base

 were set to 18 °C.

HDD =

∑

t=m

t=0

(T

base

− T

t

)

n

,T

t

< T

threshold

(1)

CDD =

∑

t=m

t=0

(T

t

− T

base

)

n

,T

t

> T

threshold

(2)

Where:

t  = time step

m = last time step of the year

n = number of time steps in one day (n = 4 for 6-hourly data)

T

t

 = mean outdoor temperature at time t

T

base

 =  reference temperature used to calculate the temperature  

difference.

T

threshold

 =  outdoor temperature above which temperature differ-

ences are calculated.

Global gridded maps of HDDs and CDDs
The global gridded maps of HDDs and CDDs were obtained as follows. 

First, HDDs and CDDs were calculated annually across 700 annual 

periods per scenario (70 temperature members per scenario over 

a 10-year period). Here we obtained 700 CDD and HDD global grid-

ded maps per global warming level: 1.0 °C (historical, 2006–2016), 

1.5 °C and 2.0 °C above pre-industrial levels. Second, five statistical 

indices across these large ensembles of HDDs and CDDs are obtained 

per coordinate (longitude × latitude) and scenario to capture the 

climate variability. These statistical indices are mean, median, 10th 

percentile, 90th percentile and standard deviation. Third, the final 

statistical results of HDDs and CDDs were stored in five different 

global gridded maps per scenario as NetCDF V4 files (*.nc). These 

global gridded maps have a spatial resolution of 0.833° × 0.556° (lon-

gitude × latitude) over the land surface and are available at the ORA  

repository24.

Geospatial statistics and visualization
The spatial visualizations and area-weighted statistics for each sub-

region and country presented in this manuscript were produced uti-

lizing Python programming and the QGIS geographic information 

system. The Python code is available on GitHub (https://github.com/

lizanafj/python_examples_with_CDDandHDD_files). The administrative 

boundaries used to perform these geospatial statistics were obtained 

from EuroGeographics and Natural Earth. Area-weighted statistics 

for all countries with populations exceeding 2 million are detailed 

in the Supplementary Information (Supplementary Note 3 and Sup-

plementary Note 4).

Limitations
HDD and CDD were calculated using the dry-bulb temperature, fol-

lowing the standard approach to enable comparison with previous 

studies8. These indices are directly related to heat and cooling expo-

sure but do not account for other social, economic and environmental 

factors influencing heating and cooling energy demand. These fac-

tors include the existing building stock and its thermal performance, 

socio-technical behaviours and usage patterns, access to energy 

resources, the availability of heating and cooling technologies and 

other variables influencing thermal comfort, such as humidity.
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The dataset was generated from HadAM4 climate model outputs. 

HadAM4 lacks interactive coupling to ocean and aerosol components. 

When compared with the CMIP6 multi-model mean, most tempera-

ture differences are below ± 0.5 °C and the largest differences, gener-

ally within 0.5–1 °C, occurring in mid to high northern latitudes. The 

greater warming projected by HadAM4 may lead to underestimation 

of HDDs and overestimation of CDDs in these regions, indicating 

a potential warm bias in derived indicators. However, these differ-

ences remain within the range observed among other models and lie 

within the credible projections produced by contemporary climate 

models37. It is also important to note that direct comparisons between 

HadAM4 and CMIP6 ensembles should be interpreted with caution, 

as differences in ensemble size, temporal sampling and model for-

mulation can influence the results. Further details are provided in 

Supplementary Note 6.

Additionally, because the global climate dataset used does not 

account for urban heat island effects, HDD values are probably over-

estimated and CDD values are underestimated in urban areas.

The use of other datasets associated with SSP2–4.5 served to 

demonstrate how our CDD and HDD datasets can be integrated into a 

‘middle-of-the-road’ socio-economic context. It is important to note, 

however, that the SSP2–4.5 projections carry inherent uncertainties 

(for example, regional downscaling methods), 
.

m
which should be con-

sidered when interpreting the results.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
The global gridded dataset of HDDs and CDDs under the three climate 

change scenarios (1 °C, 1.5 °C and 2 °C) is available in the Oxford Uni-

versity Research Archive (ORA) repository at https://doi.org/10.5287/

ora-w4qpqy522. Five maps are available for HDDs and CDDs per sce-

nario: mean, median, 10th percentile, 90th percentile and standard 

deviation. The complete list of maps for each global warming level 

is provided in Extended Data Table 1. The spatial resolution is 0.833° 

× 0.556° (longitude latitude) over the land surface. Further data are 

available from the authors on request.

Code availability
The code to calculate HDDs and CDDs from the temperature ensemble 

is available via Github at https://github.com/lizanafj/cdd_hdd_map-

ping. The code for data visualization and statistical analysis is available 

via Github at https://github.com/lizanafj/python_examples_with_

CDDandHDD_files. Examples of how to use the Python code are pro-

vided in Supplementary Note 7.
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Extended Data Fig. 1 | Global changes in HDD between 1.0 °C (historical, 

2006-2016), and future 1.5 °C and 2.0 °C global warming levels. a, Absolute 

change in HDD (Delta HDD) between the 1.0 °C and 1.5 °C scenario. b, Absolute 

change in HDD (Delta HDD) between 1.5 °C and 2.0 °C. c, Absolute change in 

HDD (Delta HDD) between 1.0 °C and 2.0 °C. Delta HDD (∆HDD) refers to the 

incremental/decremental change in mean annual HDD per grid. Administrative 

boundary data © EuroGeographics 2025.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Global changes in CDD between 1.0 °C (historical, 

2006-2016), and future 1.5 °C and 2.0 °C global warming levels. a, Absolute 

change in CDD (Delta CDD) from 1.0 °C to 1.5 °C scenario. b, Absolute change in 

CDD (Delta CDD) from 1.5 °C to 2.0 °C scenario. c, Absolute change in CDD (Delta 

CDD) between 1.0 °C and 2.0 °C. Delta CDD (∆CDD) refers to the incremental/

decremental change in mean annual CDD per grid. Administrative boundary data 

© EuroGeographics 2025.
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Extended Data Table 1 | Overview of the global gridded maps of HDD and CDD by warming scenario

This table lists the global gridded maps generated for three climate change scenarios: 1.0 °C, 1.5 °C, and 2.0 °C. For each variable and scenario, five statistical descriptors of the model 

ensemble are provided: mean, median, 10th percentile, 90th percentile, and standard deviation. These metrics were calculated from annual CDD and HDD values derived from a temperature 

ensemble comprising 70 members over a 10-year period, representing a total of 700 simulated years per scenario.
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